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An algorithm for the determination of the space-group symmetry of a crystal

from powder diffraction data, based upon probability theory, is described.

Speci®cally, the relative probabilities of different extinction symbols are

assessed within a particular crystal system. In general, only a small number of

extinction symbols are relatively highly probable and a single extinction symbol

is often signi®cantly more probable than any other. Several examples are

presented to illustrate this approach.

1. Introduction

Crystal-structure determination from powder diffraction data

faces several challenges that do not exist in the determination

of crystal structures from single-crystal data. These challenges

all principally result from the compression of three dimensions

of diffraction data on to the one dimension of a powder

diffraction pattern. Although unit-cell determination and

structure-factor extraction are the two stages in the structure

solution process that suffer most from Bragg peak overlap,

space-group determination can also be problematical. Tradi-

tionally, space-group determination from powder diffraction

data is performed manually by inspection of the systematically

absent re¯ections. However, in a powder diffraction pattern,

partial or complete Bragg peak overlap can make this manual

inspection time consuming and ambiguous, particularly for

orthorhombic and tetragonal symmetries. In this paper, an

algorithm is presented that gives a quantitative measure of

the relative probabilities of different extinction symbols.

Although it is in principle possible to distinguish between

different space groups that possess the same extinction

symbol, no attempt has been made to do this in this paper.

From a practical point of view, this is not a severe problem

since there are generally only a small number of space groups

that possess the same extinction symbol.

2. Probabilistic approach

In this paper, it is presumed that the unit cell has been

previously determined by indexing and that the crystal system

is therefore known. Armed with this information, it is possible

to perform a pro®le re®nement using either the Le Bail (Le

Bail et al., 1988) or Pawley (1981) methods in order to obtain

Bragg peak intensities. In this paper, the Pawley method is

preferred since it gives access to the full covariance matrix of

correlations between Bragg peak intensities. The information

content on the Bragg peak intensities in the diffraction pattern

is then summarized by a multivariate Gaussian likelihood

function,

p�IPjI� � �2��ÿN=2jCjÿ1=2 exp�ÿ1
2�IP ÿ I�TCÿ1�IP ÿ I��: �1�

The intensities IP � �I1; I2; . . . ; IN� are the values determined

from the linear-least-squares Pawley re®nement with one

value for each re¯ection. The matrix Cÿ1 holds information

about intensity correlations between neighbouring re¯ections

in the powder pattern. For example, if none of the re¯ections

in the diffraction pattern are found to overlap then the

correlation matrix is an N � N diagonal matrix with the

diagonal elements equal to the variance of each of the N

re®ned intensities. The correlation-matrix element is equal to

the expectation value

Cij � h�IP
i ÿ Ii��IP

j ÿ Ij�ip�IPjI�:

The off-diagonal elements are thus only of signi®cant value for

re¯ections that are substantially overlapped. It is important to

emphasize that, in the Pawley re®nement, the intensities are

not constrained to be positive. Assuming that the diffraction

pattern background has been correctly modelled, the Pawley

re®ned intensity of an isolated peak is generally positive but,

for very weak peaks, may be negative by an amount that is

similar to the standard uncertainty of the peak intensity. For

overlapping peaks, one or more of the re®ned intensities may

be negative. However, the mean of the probability distribution

of the sum of the overlapping intensities is a positive value and

the statistics of a group of re¯ections are well behaved.

The ®rst step in the determination of the most probable

extinction symbol is therefore a Pawley re®nement of the

diffraction pattern in the most general extinction group of the

crystal system under consideration. For example, if the Bravais

lattice is orthorhombic, then the extracted intensities are

obtained by performing the Pawley re®nement in extinction

group P± ± ± (corresponding to any of P222, Pmmm, Pmm2,

Pm2m, P2mm), which has no systematic absences. Denoting



research papers

48 Markvardsen et al. � Space-group determination Acta Cryst. (2001). A57, 47±54

the re®ned Pawley data set by the intensity vector IP and using

Bayes's theorem gives the relation

p�EgrjIP� � p�Egr�p�IPjEgr�=p�IP�;
where p�Egr� is here the prior probability distribution. In this

paper, it is presumed that all extinction symbols are a priori

equally probable and thus p�Egr� is a constant. Other prior

probability options are possible; one obvious choice is to bias

the probabilities by the known relative frequencies with which

space groups occur in nature for a particular class of

compounds. Additionally, as the data do not change from

consideration of one extinction symbol to another, p�IP� is

constant. Together with the prior assignment for p�Egr�, this

means that p�EgrjIP� is proportional to p�IPjEgr� as a function

of Egr. In other words,

p�EgrjIP� / p�IPjEgr�: �2�
The quantity p�IPjEgr� thus gives the relative probability for

each extinction symbol of a crystal system. The different

extinction symbols may then be ranked by their relative

probabilities. To calculate the probability p�IPjEgr�, consider

®rst the joint probability density p�IP; IjEgr�, which may be

written as

p�IP; IjEgr� � p�IjEgr�p�IPjI;Egr�: �3�
Clearly, the last term in (3) does not depend on Egr and, by

marginalizing out the components of the intensity vector I in

(3), the equation that will be used to calculate the Bayesian

probability table is obtained:

p�IPjEgr� �
R

p�IjEgr�p�IPjI� dI: �4�
In this equation, p�IPjI� is the likelihood function from (1)

and p�IjEgr� is the probability of observing the intensities

I � �I1; I2; . . . ; IN� given that Egr is the true extinction group.

In assigning p�IjEgr�, the trivial assumption is made that all of

the intensities are independent and identically distributed; in

other words, we can write p�IjEgr� as the product

p�IjEgr� �
QN
i�1

p�IijEgr�:

This reduces the problem of assigning p�IjEgr� to that of

assigning a univariate distribution p�IijEgr�. Depending on the

extinction group Egr, the intensity Ii will be predicted either to

be present or to be absent. When the ith intensity is predicted

to be absent by Egr, p�IijEgr� will be a delta function:

p�IijEgr� � ��Ii�:
If the ith intensity is predicted to be present, then p�IijEgr� is

modelled by an exponential distribution with mean value �,

p�IijEgr� �
0 for Ii < 0

�ÿ1 exp�ÿIi=�� for Ii � 0:

�
�5�

The delta-function assignment for an absence is intuitively

straightforward to accept; if an intensity is predicted to be

absent, then this is exactly equivalent to assigning zero

probability density for any non-zero intensity. The exponential

distribution assigned in (5) is the intensity distribution for an

acentric re¯ection (Wilson, 1949) and its general use for all

space groups may be questioned. However, in x6, it will be

shown that it is an appropriate choice for modelling a presence

regardless of whether the underlying space group is centro-

symmetric or non-centrosymmetric. As a corollary, however,

this simpli®cation does negate the possibility of discriminating

between centrosymmetric or non-centrosymmetric space

groups. As stated earlier, this is in general not a serious

problem, since only a small number of space groups belong to

a given extinction symbol.

3. Isolated reflections

In this section, the evaluation of probabilities for the presence

or absence of an isolated re¯ection in the powder diffraction

pattern is addressed. Subsequent sections deal with the

general case of overlapping re¯ections.

The following analytical solutions of (4) may be obtained by

assuming that the re¯ection is (a) present and (b) absent:

p�IPjpresent� � 1

2�
exp

�2

2�2
ÿ IP

�

� �
erfc

1

21=2

�

�
ÿ IP

�

� �� �
;

�6�
where erfc(x) is the complementary error function and

p�IPjabsent� � 1

�2��1=2�
exp ÿ �I

P�2
2�2

� �
: �7�

Hence, using (2), the absent/present probability ratio is given

by

p�absentjIP�
p�presentjIP� �

p�IPjabsent�
p�IPjpresent� �

�21=2

��1=2

� �
exp ÿz2� �

erfc�z� ; �8�

where

z � 2ÿ1=2��=�ÿ IP=��:
Figs. 1(a) and 1(b) show the probabilities of a peak being

absent and present, respectively, whilst Fig. 1(c) shows the

logarithm of the ratio in (8) as a function of IP and � for

constant � � 1. Note that � is the expected intensity of

a re¯ection that is present; for weak diffraction data, �
will be small, whilst, for strong diffraction data, � is expected

to be large. With the asymptotic approximation

erfc�z� � �ÿ1=2zÿ1 exp�ÿz2�, it may be shown, in the limit of �
tending towards zero, that the ratio in (8) tends towards one.

In other words, weak peaks in weak data offer little in the way

of discrimination with respect to systematic presences or

absences. In the other limit, as � tends to in®nity for a ®xed

value of IP, the ratio in (8) becomes proportional to �. This

highlights the need to have a good initial estimate for �, as it is

always possible to make the `peak absent' case the more

probable, irrespective of the data, by choosing � to be suf®-

ciently large. In x6, it is shown how � can be automatically

calculated from the powder diffraction pattern. A close

examination of Fig. 1(c) shows how any suggestion that a peak

is present rapidly discriminates against a systematic absence.

For example, with � � 20, a peak with an intensity IP � 2 and



� � 1 represents the point where the ratio in (8) is equal to 1.

A peak that is only twice as intense (IP � 4� 1) will be ~300

times more likely to be present than absent. Thus strong peaks

severely penalize the criterion of systematic absence.

4. Computational considerations

The dimension of the integral in (4) is equal to the number

of intensities (typically several hundred) that are evaluated in

the Pawley re®nement. Integrals of this size are, in general,

non-trivial to evaluate numerically and may sometimes be

intractable. This section addresses this numerical problem,

with the principal savings in computation time coming from

the treatment of the correlation matrix in a block-diagonal

style suited to its inherent structure. Thus, the integral in (4) is

split up into a set of smaller integrals. Integrals with dimension

larger than one are solved using the Monte Carlo method. The

remaining integrals have analytical solutions.

4.1. The correlation matrix

If all N peaks in a powder diffraction pattern are non-

overlapping, then the correlation matrix is diagonal. The

likelihood function in (1) becomes a product of N `one-

dimensional' Gaussian distributions and the integral in (4) is

reduced to a product of N one-dimensional integrals that can

be evaluated analytically.

In general, diffraction patterns exhibit signi®cant peak

overlap and thus the correlation matrix takes a more complex

form. It will, however, always be approximately block diagonal

with blocks of dimensions equal to the number of peaks

present in each of the overlap regions. In writing C in block-

diagonal form, it is convenient to ignore small overlaps

between peaks. This is accomplished by only keeping the off-

diagonal elements of the correlation matrix that satisfy the

criterion

Cij=�CiiCjj�ÿ1=2 � �: �9�

Thus, starting from the ®rst re¯ection in the diffraction

pattern, C12=�C11C22�1=2 � � is evaluated. The correlation

cut-off is typically about 40%. If the condition is not satis®ed,

C12 is set to zero and thus I1 and C11 de®ne the ®rst block.

Clearly, blocks having only one member represent an uncor-

related re¯ection. If re¯ections 1 and 2 are found to be

correlated, then the expressions C13=�C11C33�1=2 � � and

C23=�C22C33�1=2 � � are assessed for correlation between

re¯ection 3 and either of the ®rst two. This process is repeated

until a re¯ection is reached that is not correlated with any

previous re¯ection and thus the end of a block has been

reached and a new one begins. At the end of this operation,

the correlation matrix C is transformed into M submatrices

C1;C2; . . . ;CM of varying dimensions. All of these M

submatrices are positive de®nite because every leading prin-

cipal submatrix of a positive-de®nite matrix is also positive

de®nite. In the block-diagonal approximation, the likelihood

in (1) may thus be written as the product of M univariate and

multivariate Gaussian distributions, i.e.

p�IPjI; �� � QM
m�1

p�IP
mjIm; ��

� �1=�2��N=2� QM
m�1

�1=jCmj1=2�

� exp�ÿ 1
2 �IP

m ÿ Im�TCÿ1
m �IP

m ÿ Im��;
where � is the correlation cut-off criterion in (9) and Im and Cm

are the intensities and correlation matrix de®ning block m.

Inserting this simpli®ed likelihood into (4) gives

p�IPjEgr; �� �
QM

m�1

R
p�ImjEgr�p�IP

mjIm; �� dIm: �10�

This may be calculated more easily than (4) when M> 1.
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Figure 1
The probabilities of a peak being (a) absent or (b) present, shown as a
function of IPand � for constant � � 1. The log10 of the ratio of the above
probabilities is shown as a function of IPand � in (c). The arrow points to
the contour level corresponding to an equal probability of a re¯ection
being absent or present.
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4.2. Calculating a block integral

For block integrals with dimensions higher than one in (10),

no analytical solution exists and we use the Monte Carlo

technique to ®nd a numerical solution. Our implementation of

the Monte Carlo method is described in the subsections below.

4.2.1. Monte Carlo method. Given N samples x�n� drawn

from the probability distribution p�x�, then, for a particular

function g�x�, the expectation value for g is

hg�x�ip�x� �
R

g�x�p�x� dx � �1=N�PN
n�1

g�x�n�� � �; �11�

where the error term � is approximately given by

�2 � �1=N�PN
n�1

g2�x�n�� ÿ �1=N�PN
n�1

g�x�n��
� �2

: �12�

Comparing g in (11) with p�ImjEgr� in (10), and noting the

similarity in form, the mth term of (10) may be written as

p�IP
mjEgr; �� � hp�ImjEgr�ip�IP

mjIm;��: �13�
4.2.2. Generation of Gaussian samples. Samples from a

multivariate Gaussian distribution are required in order to

calculate the expectation value in (13). Any such distribution

can always be transformed into the standard Gaussian distri-

bution by the change of variables

I�n� � My�n� � IP; �14�
where M is any non-singular factorization of C such that

C � MMT and y is distributed by the standard Gaussian, i.e.

with zero mean values and the identity matrix as covariance

matrix. Standard methods for generating samples y�n� drawn

from a standard Gaussian distribution exist (e.g. Press et al.,

1992) and, using the linear transformation in (14), one can

then generate a sample drawn for any multivariate Gaussian

distribution. To reduce the computational cost of calculating

the matrix±vector multiplication My�n� in (14), the covariance

matrix C is decomposed by a standard Cholesky algorithm to

obtain a triangular matrix for M. In addition, by calculating

the components of a sample I�n� one by one, if the ith

component is negative, none of the remaining components

need be calculated because p�I�n�jEgr� is zero when any of the

components of I�n� are negative [see (5)].

4.2.3. Very improbable integrals. The Monte Carlo inte-

gration method works very well for the majority of block

integrals in (10) but occasionally it fails. Typically, this happens

when a number of the re®ned intensities in a block possess

negative intensity values. In such cases, the probability of

generating a Gaussian sample I�n�, which lies within the sample

region where p�I�n�jEgr� is non-zero, can be extremely small.

Hence, the integration fails as it becomes impractical to

produce a non-zero value for the block integral within a

reasonable time scale. Rather than discard such blocks, a

simple modi®cation of the shape of the integral can render it

solvable within an acceptable time scale. For instance, if the

problem is to produce Gaussian samples I�n� where all the

components of I�n� are positive and therefore p�I�n�jEgr� is non-

zero, then the Monte Carlo block integral in (13) can be recast

into the form

hp�ImjEgr�ip�IP
mjIm;��

� expfÿ�PIP
m�TCÿ1

m P��1ÿ 1
2P�IP

m�g
� hexp��PIP

m�TCÿ1
m Im�p�ImjEgr�ip��1ÿP�IP

mjIm;��: �15�

Here the Gaussian sampler takes the form p��1ÿ P�IP
mjIm; ��,

where 1 is an Nm � Nm identity matrix and P is a diagonal

matrix with (a) ones along the diagonal for components of IP
m,

which are negative, and (b) the remaining diagonal elements

equal to zero. As none of the components of �1ÿ P�IP
m of the

Gaussian sampler in (15) are negative, we are guaranteed at

least a 50% success rate in generating samples I�n�, where the

function whose expectation value is to be determined,

exp��PIP
m�TCÿ1

m Im�p�ImjEgr�;

is non-zero. This and other similar manipulations can be used

to evaluate numerically even extremely improbable block

integrals.

4.3. Repetition of calculations

If the number of intensities in a block is relatively small,

then the same integral values may be calculated many times

over for different symmetries that possess the same systematic

absences within a single block. In order to avoid undue

repetition of these computationally expensive calculations, the

value of each integral is stored and reused whenever possible.

5. Systematic absences and complete reflection overlap

The effect of systematic absences as well as completely over-

lapping peaks upon the integrals under consideration must be

accounted for before the Monte Carlo method outlined above

can be applied.

5.1. Systematic absences

Systematic absences in Egr introduce delta functions into

the integral in (4). For example, if Egr dictates that only the

®rst NR of the N possible intensities are present in the

diffraction pattern, then these NR intensities can be repre-

sented by the NR � 1 vector IR � �I1; I2; . . . ; INR
� and the

integral in (4) reduces to

p�IPjEgr� � �2��ÿN=2jCjÿ1=2�1=�NR�

� R exp ÿ1
2�IP ÿ ~I�TCÿ1�IP ÿ ~I� ÿ �ÿ1

PNR

i�1

Ii

� �
dIR;

where ~I is an N � 1 vector, the ®rst NR components of which

are the components of IR and the remaining elements are zero.

The above integral can be rewritten as



p�IPjEgr� � �2��ÿN=2jCjÿ1=2�1=�NR�
� exp�12�Inew

R �TCÿ1
RRInew

R ÿ 1
2�IP�TCÿ1IP�

� R exp

�
ÿ 1

2�Inew
R ÿ IR�TCÿ1

RR�Inew
R ÿ IR�

ÿ �ÿ1
PNR

i�1

Ii

�
dIR;

where Cÿ1
RR is the ®rst NR rows and NR columns of Cÿ1, and

�Inew
R �T � �IP�TCÿ1

NRCRR is a new set of Gaussian mean values,

where Cÿ1
NR is the ®rst N and NR columns of the inverse

correlation matrix Cÿ1.

5.2. Two completely overlapping peaks

In a Pawley re®nement, two almost identically overlapping

re¯ections must be treated as a single variable representing

the sum of the two different re¯ection intensities in order that

instabilities in the least-squares re®nement are avoided. These

doublets in the Pawley re®nement lead to a likelihood

expression of the form

p�IPjI1; I2� � �2��ÿ1=2�ÿ1 expfÿ�IP ÿ �I1 � I2��2=�2�2�g;
where I1 and I2 are two re¯ection intensities with different

Miller indices and IP is the re®ned value for the sum of the two

intensities. When both I1 and I2 are predicted to be present by

Egr, this results in an entry of the following type in (10):

p�IPjI1 and I2 present�
� �2��ÿ1=2�ÿ1�1=�2� R1

0

R1
0

expfÿ�IP ÿ �I1 � I2��2=�2�2�

ÿ �I1 � I2�=�g dI1dI2: �16�
Clearly, this integral depends only on the sum of the two

intensities I1 and I2. Therefore, by changing the variables to

the sum I � I1 � I2 and difference ID � I1 ÿ I2 intensities, the

expression becomes (on integrating out ID)

p�IPjI1 and I2 present�
� �2��ÿ1=2�ÿ1�1=�2� R1

0

I exp�ÿ�IP ÿ I�2=�2�2� ÿ I=�� dI:

�17�
Equation (17) has the analytical solution

p�IPjI1 and I2 present�
� 2ÿ1=2�ÿ2���ÿ1=2 ÿ z exp�z2� erfc�z�� exp�ÿ�IP�2=�2�2��

with z � 2ÿ1=2��=�ÿ IP=��. This step from (16) and (17) can

easily be extended to a pattern containing any number of

correlated singlets, doublets and multiplets.

6. Calculation of l

As outlined in x3, the choice of an appropriate prior mean

intensity value � is important and it is appropriate to use the

diffraction pattern in determining this value. Fortunately,

certain Bragg re¯ections are always present in the diffraction

pattern irrespective of the extinction symbol. Furthermore, for

the majority of patterns, a number of these re¯ections will be

uncorrelated with others and thus � can be set equal to the

arithmetic mean of such re¯ections. As a consequence of using

all the uncorrelated re¯ections of the pattern to estimate one

value of �, this value represents � at any (2�) location in the

diffraction pattern. Fig. 2 shows the intensity and frequency of

the re¯ections used in the calculation of � for (a) dopamine

hydrobromide, space group Pbc21 and (b) remacemide nitrate,

space group P21=a. Despite representing non-centrosym-

metric and centrosymmetric space groups, respectively, both

histograms show reasonable agreement with the exponential

distribution p�I� � exp�ÿI=��=�. This ambiguity highlights

the dif®culties in assigning a centric/acentric distinction solely

on the basis of this subset of well determined re¯ections. In the
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Figure 2
Histogram plots of re¯ection intensity (grouped into a number of
intervals) versus the number of uncorrelated intensity values falling into
each of these intervals for the compounds (a) dopamine hydrobromide
and (b) remacemide nitrate. The arithmetic means of the uncorrelated
intensities were found to be 37 and 2.2, respectively. The exponential
distributions [equation (5)] are plotted as dashed lines and scaled such
that the values at the origin are equal to the frequency numbers for the
®rst intensity intervals. The correlation cut-off, �, is 40% in both cases
[see equation (9)].
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case of the number of re¯ections available for estimating �
being too small (e.g. less than 5), then an alternative strategy,

such as simply taking the arithmetic mean of all the re¯ection

intensities present in the pattern, may be preferred.

7. Performance of the algorithm

Diffraction data (Fig. 3) collected from three crystalline

samples are used to illustrate the performance of the algor-

ithm. Synchrotron X-ray data were collected from a 1 mm

capillary containing dopamine hydrobromide (Shankland et

al., 1996) on Station BM16 of the ESRF, using an incident

wavelength of 0.6528 AÊ . Laboratory X-ray data were collected

from a sample of deca¯uoroquarterphenyl (SmrcÏok et al.,

2000) using Mo K� radiation and time-of-¯ight neutron

diffraction data were collected from a crystalline sample of

ZrW2O4 (Evans et al., 1999) on the high-resolution powder

diffractometer of the ISIS spallation neutron source. In each

case, unit cells were determined by conventional indexing

procedures and correlated integrated intensities were

extracted from the data in appropriate space groups possess-

ing no systematic absences, using Pawley re®nement programs

based upon the Cambridge Crystallographic Subroutine

Library (David et al., 1992). These extracted intensities alone

were used as input to a space-group-determination program

written in C++ that implements the above algorithm. As

outlined in x6, values of � were determined directly from

uncorrelated peaks in the data. Whilst evaluation of the

probability tables is computationally non-trivial, the program

typically takes only a few seconds to execute on a modern

personal computer.

7.1. Results

Table 1 lists each of the extinction symbols for the ortho-

rhombic Laue class and the corresponding probabilities

calculated for the dopamine hydrobromide data, with the

probabilities expressed as

ln�p�EgrjIP�=p�E---jIP��;
where Egr is the extinction group being tested and E--- is an

appropriate space group that possesses no systematic absences

for the orthorhombic Laue class. Table 2 shows the ten most

probable extinction-group choices ranked by probability, with

the associated re¯ection conditions for each of these choices.

Likewise, Tables 3 and 4 show ranked lists of extinction

symbols, corresponding probabilities and associated re¯ection

conditions for the monoclinic deca¯uoroquarterphenyl and

cubic zirconium tungstate data sets, respectively. Table 5

summarizes the most probable extinction symbols (and

corresponding space groups) for each of the compounds

examined. The correct space groups for the compounds are

also shown.

7.2. Discussion

A careful examination of Tables 1 to 4 shows the high

degree of discrimination afforded by the algorithm outlined in

this paper. Taking the speci®c example of dopamine hydro-

bromide, Table 1 shows that the majority of possible extinction

Table 1
Extinction symbols for orthorhombic space groups, listed in the order in which they appear in ITCA (1983) and corresponding probabilities expressed as
ln�p�EgrjIP�=p�E---jIP�� for dopamine hydrobromide.

The correlated integrated intensities were extracted in space group Pmmm.

Symbol Probability Symbol Probability Symbol Probability Symbol Probability

P± ±21 5.9 Pbaa ÿ18084.6 Pn±a ÿ15534.9 B±(ac)b ÿ56981.4
P±21± 15.2 Pbab ÿ13107.2 Pn±b ÿ5915.3 Bb± ± ÿ56419.8
P±2121 21.1 Pban ÿ17774.1 Pn±n ÿ15224.4 Bb±b ÿ56565.9
P21± ± ÿ4644.4 Pbc± 97.9 Pna± ÿ19708.7 Bb(ac)± ÿ56825.6
P21±21 ÿ4638.5 Pbca ÿ10015.9 Pnaa ÿ25172.7 Bb(ac)b ÿ56971.7
P2121± ÿ4629.2 Pbcb ÿ388.5 Pnab ÿ20195.3 A± ± ± ÿ64661.5
P212121 ÿ4623.3 Pbcn ÿ9705.4 Pnan ÿ24862.2 A21± ± ÿ69303.2
P± ±a ÿ10108.4 Pbn± ÿ14704.3 Pnc± ÿ5387.1 A± ±a ÿ74368.6
P± ±b ÿ471.3 Pbna ÿ20168.2 Pnca ÿ15501.0 A±a± ÿ79919.6
P± ±n ÿ9782.7 Pbnn ÿ19857.7 Pncb ÿ5873.6 A±aa ÿ84985.0
P±a± ÿ12673.3 Pc± ± ÿ5428.3 Pncn ÿ15190.5 A(bc)± ± ÿ64654.1
P±aa ÿ18137.2 Pc±a ÿ15534.5 Pnn± ÿ20189.4 A(bc)±a ÿ74361.2
P±ab ÿ13144.6 Pc±b ÿ5899.6 Pnna ÿ25653.3 A(bc)a± ÿ79912.2
P±an ÿ17811.6 Pc±n ÿ15208.8 Pnnb ÿ20675.9 A(bc)aa ÿ84977.6
P±c± 43.9 Pca± ÿ19708.3 Pnnn ÿ25342.8 I± ± ± ÿ53517.0
P±ca ÿ10066.2 Pcaa ÿ25172.2 C± ± ± ÿ58406.3 I± ±(ab) ÿ54679.6
P±cb ÿ423.6 Pcab ÿ20179.6 C± ±21 ÿ60009.3 I±(ac)± ÿ53922.8
P±cn ÿ9740.5 Pcan ÿ24846.5 C± ±(ab) ÿ59569.0 I±cb ÿ55085.4
P±n± ÿ14754.6 Pcc± ÿ5386.6 C±c(ab) ÿ61632.1 I(bc)± ± ÿ53492.0
P±na ÿ20218.6 Pcca ÿ15500.5 Cc± ± ÿ67348.9 Ic±a ÿ54654.5
P±nb ÿ15225.9 Pccb ÿ5858.0 Cc±(ab) ÿ68511.5 Iba± ÿ53897.8
P±nn ÿ19892.9 Pccn ÿ15174.8 Ccc± ÿ67809.0 Ibca ÿ55060.4
Pb± ± 50.3 Pcn± ÿ20188.9 Ccc(ab) ÿ68971.7 F± ± ± ÿ94799.8
Pb±a ÿ10055.8 Pcna ÿ25652.9 B± ± ± ÿ56444.7 F±dd ÿ109509
Pb±b ÿ436.1 Pcnb ÿ20660.3 B±21± ÿ56429.5 Fd±d ÿ110222
Pb±n ÿ9745.2 Pccn ÿ25327.2 B± ±b ÿ56575.6 Fdd± ÿ110833
Pba± ÿ12620.7 Pn± ± ÿ5428.8 B±(ac)± ÿ56850.6 Fddd ÿ111193



symbols for this orthorhombic data set are extremely

improbable, with only six extinction symbols being more

probable than the one corresponding to the extinction group

having no systematic absences. Of these six possibilities (Table

2), it is clear that Pbc± is much more probable, given the data,

than the next choice, Pb± ±, which is in turn much more

probable than P±c± etc. It is not surprising that the second- to

sixth-ranked choices are more probable than P± ± ± since all

contain subsets of the re¯ection conditions for the most

probable choice Pbc±. Similarly, those that are less probable

than P± ± ± all contain additional conditions that are not met

by the data. In particular, it is clear from Table 1 that the

possibility of the diffraction data corresponding to a face-

centred extinction symbol is extremely remote.

Tables 3 and 4 show that this high degree of discrimination

also holds for the monoclinic and cubic data sets examined.

Indeed, in the cubic case, only one extinction symbol proved

to be more likely than the one corresponding to the extinction

group having no systematic absences.

Table 5 shows that, in each case, the correct extinction

symbol for the data has been determined. It is useful to recall

that it is the correct extinction symbol that is determined

from the data; if multiple space-group choices exist within the

extinction class, then additional information must be brought

to bear on the problem of the ®nal space-group choice. Often,

this is a trivial matter, as the space-group choice is likely to

re¯ect some intrinsic molecular property. For example, the

deca¯uoroquarterphenyl molecule possesses a centre of

symmetry and so a satisfactory structure solution and subse-

quent Rietveld re®nement are obtained in I2=a. As outlined in
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Table 2
Extinction symbols, probabilities expressed as ln�p�EgrjIP�=p�E---jIP��
and re¯ection conditions for the 10 most probable choices calculated for
dopamine hydrobromide.

Symbol Probability hkl 0kl h0l hk0 h00 0k0 00l

Pbc± 97.9 k l k l
Pb± ± 50.3 k k
P±c± 43.9 l l
P±2121 21.1 k l
P±21± 15.2 k
P± ±21 5.9 l
P± ± ± 0
Pbcb ÿ388.5 k l k k l
P±cb ÿ423.6 l k k
Pb±b ÿ436.1 k k k
P± ±b ÿ471.3 k k

Table 3
Extinction symbols, probabilities expressed as ln�p�EgrjIP�=p�E---jIP��
and re¯ection conditions for the monoclinic (b unique) choices for the
compound deca¯uoroquarterphenyl.

Symbol Probability hkl 0kl hk0 h0l h00 00l 0k0

I1a1 153.1 h+k+l h, l k
I1±1 129.1 h+k+l h+l k
P1 21=n 1 60.1 h+l k
P1 21=c 1 59.6 l k
P1n1 57.1 h+l
P1c1 56.6 l
P1 21=a 1 56.1 h k
P1a1 53.1 h
P1 21 1 3.0 k
P1±1 0
A1n1 ÿ3619.1 k+l h, l k
A1±1 ÿ3640.9 k+l l k
C1c1 ÿ4218.7 h+k h, l k
C1±1 ÿ4247.9 h+k h k

Figure 3
Diffraction data used to test the algorithm: (a) dopamine hydrobromide,
(b) deca¯uoroquarterphenyl and (c) zirconium tungstate.
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x6, although discrimination between centrosymmetric and

non-centrosymmetric space groups can be achieved in prin-

ciple through an examination of the distribution of structure-

factor magnitudes, we have found that, in practice, the infor-

mation content of powder diffraction data does not normally

allow such a distinction.

The discussion so far has focused on discriminating space

groups by examination of re¯ection intensities. It is worth

noting that space groups may also be determined by analysis

of Harker lines and sections in a Patterson map. By invoking

Parseval's theorem, it is clear that the present analysis is

equivalent to such a process. The likelihood function trans-

lated from reciprocal space to real space is a weighted

difference between observed and model Patterson maps. The

probability expressions in (5) enforce upon the model

Patterson map the symmetry of a random-atom structure that

obeys the space-group symmetry. The

model Patterson map is therefore that

corresponding to a random-atom

structure with the caveat that the

Harker lines and sections are consis-

tent with the model space-group

symmetry.

8. Conclusions

It has been shown that the problem of

space-group determination from

powder diffraction data can be placed

on a quantitative basis by the appli-

cation of probability theory to corre-

lated integrated intensities extracted

directly from a powder diffraction

pattern. The methodology developed

removes the need to make subjective

judgements about whether or not a

peak is `present' or `absent' and extends the range of data used

in the decision-making process from a few isolated peaks at

the start of the pattern to the entire diffraction pattern.

We gratefully acknowledge useful discussions with Dr D. S.

Sivia during the early stages of this work.
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Table 4
Extinction symbols, probabilities expressed as ln�p�EgrjIP�=p�E---jIP�� and re¯ection conditions for
the cubic choices for the compound zirconium tungstate.

Symbol Probability hkl 0kl hhl 00l

P21(42)± ± 1.6 l
P± ± ± 0
P41± ± ÿ98.6 l = 4n
Pn± ± ÿ1110.7 k+l l
Pa± ± ÿ1694.4 k l
P± ±n ÿ8381.1 l l
Pn±n ÿ9976.1 k+l l l
I± ± ± ÿ11321.9 h+k+l k+l l l
I41± ± ÿ11422.2 h+k+l k+l l l = 4n
Ia± ± ÿ12625.8 h+k+l k, l l l
I± ±d ÿ12942.4 h+k+l k+l 2h+l = 4n, l l = 4n
Ia±d ÿ13873.3 h+k+l k, l 2h+l = 4n,l l = 4n
F± ± ± ÿ29211.4 h+k, h+l, k+l k, l h+l l
F41± ± ÿ29311.7 h+k, h+l, k+l k, l h+l l = 4n
Fd± ± ÿ29568.6 h+k, h+l, k+l k+l = 4n, k, l h+l l = 4n
F± ±c ÿ30272.4 h+k, h+l, k+l k, l h, l l
Fd±c ÿ30629.6 h+k, h+l, k+l k+l = 4n, k, l h l l = 4n

Table 5
The most probable extinction symbols, corresponding space-group
choices and true space groups for the three diffraction data sets.

Compound
Extinction
symbol

Space-group
choices

True space
group

Dopamine hydrobromide Pbc± Pbca, Pbc21 Pbc21

Deca¯uoroquarterphenyl I1a1 Ia, I2=a I2=a
Zirconium tungstate P21± ±; P42± ± P213, P4232 P213


